عرض مشاركة واحدة
  #19  
قديم 07-30-2015, 12:31 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي

 

Did you mean: Neuroimmunology of Autism Spectrum Disorder. Neurotransmitters as predictive biomarkers of responsiveness to substance abuse treatment Neuroimmunology of Autism Spectrum Disorder. Addressing Adrenal Imbalance: The Future of Adrenal Health Avipaxin and Modulation of the Immune System. The Clinical Utility of Urinary Neurotransmitter Analysis: An Overview. Daxitrol Essential: A Novel Approach for Controlling Cravings. Hypersensitivity Reactions and Methods of Detection. Methylation: Fundamental to a Healthy Nervous System A Novel Top-down Strategy For Addressing Autonomic Imbalances. Download PDF NEUROIMMUNOLOGY OF AUTISM SPECTRUM DISORDER David Marc, MSa; Kelly Olson, PhD NeuroScience, Inc., 373 280th St., Osceola, WI 54020, United States address correspondence to: david.marc@neurorelief.com Abstract Autism is a developmental disorder characterized by immunological and neurological abnormalities. The role of cytokines in the pathophysiology of autism has been researched suggesting a relationship with altered blood-brain barrier permeability and subsequent neuroinflammation. Cytokine recruitment to the CNS may result in altered neurotransmitter signaling and the behavioral manifestation of autism symptoms. Other immune mediated events such as changes in the number and activity of natural killer cells, macrophages, immunoglobulins, and glutathione may contribute to altered neuronal signaling and neurotransmitter imbalances. The purpose of this overview is to examine the relationship between immune system and nervous system dysfunction to determine biomarkers for autism spectrum disorder. We will explore the utility of serum cytokines and urinary neurotransmitter analyses as biomarkers for autism. Introduction Autism is a pervasive developmental disorder characterized by impaired development of social interaction and communication, and a markedly restricted repertoire of activities and interests (American Psychiatric Association, 1994). The exact etiology of autism remains largely unknown, however, literature has emerged to suggest genetic, neurological, immunological, and environmental contributions. Immunological and environmental factors, such as diet, infection, and xenobiotics play critical roles in the development of autism. (Ivarsson, Bjerre, Vegfors, and Ahlfors, 1990; Wakefield et al., 1998; Edelson and Cantor, 2002; Fatemi et al., 2002; Kibersti and Roberts, 2002). Abnormalities in enzymatic function (Fatemi et al., 2002a), autoantibodies to brain proteins (Vojdani et al., 2002), and maternal infections during pregnancy (Shi et al., 2003) have been indicated in the autism population. Additionally, pathological alterations in genes involved in the patterning of the central nervous system, biochemical pathways, development of dendrites and synapses, and genes associated with the immune system have been observed in this population (Burber and Warren, 1998; Palmen, Engeland, Hof, and Schmitz, 2004; Polleux and Lauder, 2004; Cohen et al., 2005; Crawley, 2007; Glessner et al., 2009; Wang et al., 2009). Interestingly, an emerging body of evidence is growing concerning the link between abnormal immune function and neurological dysfunction with autism spectrum disorders. At critical times of infantile development, immune dysregulation may result in the release of immunomodulatory molecules, such as chemokines and cytokines, leading to altered neuronal development and neural function (Cohly & Panja, 2005). Chemokines and cytokines are proteins that manage immune cell trafficking and cellular arrangement of immune organs and determine appropriate immune responses (Borish & Steinke, 2003). Cytokines can be transported to and/or synthesized in the central nervous system (CNS) thereby establishing communication between peripheral immune cells and CNS neurons (Dunn, 2006). The purpose of this overview is to identify neurological and immunological abnormalities that exist in individuals with autism. Further, it will become critically apparent that neuroimmune biomarker testing for autism can identify these abnormalities and ensure therapeutic effectiveness. Cytokines and Neurotransmission Cytokines released by immune cells, particularly interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α), communicate with the CNS to affect neural activity and modify behaviors, hormone release, and "normal" autonomic function (Dunn, 2006). Cytokines can enter the brain by various mechanisms including active transport or direct entry through a compromised blood-brain barrier. Active transport mechanisms that involve a saturable system have been documented for IL-1 and TNF-α (Dunn, 1992; Gutierrez, Banks, and Kastin, 1993; Gutierrez, Banks, Kastin, 1994). Additionally, Maier and colleagues (1998) found that cytokines may directly enter the central nervous system at circumventricular regions, predominantly the area postrema, where the blood brain barrier is less protective (Pavlov et al., 2003). Other circumventricular regions of potential cytokine entry include the pineal gland, subfornical organ, organum vasculosum of the lamina terminalis, choroid plexus, median eminence, subcommissural organ, and posterior pituitary (Ganong, 2000). Upon entry into the CNS, cytokines promote regulatory signals in the brain, through augmentation of hypothalamic-pituitary-adrenal (HPA) axis activity and vagal efferents, which can modify peripheral immune status. Enhanced HPA axis release of epinephrine and cortisol can decrease the release of pro-inflammatory cytokines from macrophages in the periphery (Pavlov et al., 2003). In addition, enhanced vagal efferent activity can trigger the release of acetylcholine from peripheral parasympathetic nerve endings, decreasing the release of pro-inflammatory cytokines (Pavlov et al., 2003). It is therefore evident that the immune system and nervous system communicate to maintain homeostasis, yet under excessive immune challenges alterations in neuronal signaling can develop. Studies have shown that peripheral activation of cytokines can lead to CNS release of various neurotransmitters. Specifically, IL-1 administration may promote CNS release of norepineprhine, serotonin, dopamine, glutamate, and gamma-amino-butyric-acid (GABA) (Dunn, 1992; Zalcman et al., 1994; Casamenti et al., 1999; Luk et al., 1999; Huang and O'Banion, 1998). With enhanced turnover of these neurotransmitters, significant neurological and behavioral alterations transpire. Research has shown how immune challenges can alter neurotransmission leading to behavioral changes and psychiatric disorders (Kronfol & Remick, 2000). For example, elevated levels of interleukin-6 (IL-6) have been associated with depressive symptoms (Bob et al., 2009). In Autism, alteration in immune system function may contribute to impaired neurological signaling. A possible mechanism contributing to neuronal dysfunction in the autistic brain is the transport of noxious substances across the blood-brain barrier into the CNS leading to autoimmunity. Studies have shown how cytokines, chemokines, immunoglobulins, and natural killer cells promote the recruitment of noxious chemicals in the brains of autistic individuals, as well as contribute to autoimmunity (Ashwood et al., 2006). Proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1) and thymus activation-regulated chemokine (TARC), along with cytokines, such as TNF-α, were consistently elevated in the brains of individuals with autism (Cohly & Panja, 2005). The transport or synthesis of cytokines in the brain may contribute to neuroinflammation and possible neurotransmitter imbalances (Cohly & Panja, 2005). Furthermore, Ashwood and colleagues (2008) found that reduced levels of the modulatory cytokine, transforming growth factor-β1 (TGF-β1), in autistic children contributed to the dysregulation of adaptive behaviors and predisposal for autoimmune responses. Autoimmunity can be detrimental to normal neuronal signaling and result in significant behavioral abnormalities (Ashwood et al., 2006). Vojdani and colleagues (2008) reported decreased natural killer cell activity in autistic children with low intracellular levels of glutathione, IL-2, and IL-15. Decreased natural killer cell activity has been associated with autoimmunity through alteration of cytokine production (Johansson et al, 2005). Lastly, Entrom and colleagues (2009) demonstrated elevated immunoglobulin G4 (IgG4) production in children with autism. Elevated IgG antibodies have been identified against brain-specific proteins in the hypothalamus and thalamus of autistic children, again suggesting autoimmunity (Cabanlit et al., 2007). Although limited studies on autism and autoimmunity exist, it has been hypothesized that the excess transport and synthesis of proinflammatory chemokines, cytokines, and immunoglobulins from the periphery to the CNS contribute to the development of autoimmune responses (Cohly & Panja, 2005). Autoimmunity may lead to dysregulated neuronal signaling causing behavioral manifestation of autism symptoms. Therefore, assessment of immune and nervous system function may provide biochemical targets to treat patients with these behavioral abnormalities. Nervous System Biomarkers and Autism Biomarkers are substances used as indicators of a biologic state. Research has revealed the clinical utility of urinary neurotransmitters as practical biomarkers to associate with neurotransmission (Kusaga et al., 2002; Hughes et al., 2004). Urinary neurotransmitter analysis is an innovative, minimally invasive method to assess peripheral neurotransmitter levels, and has a breadth of data to support its usefulness in clinical practice. In the 1950's, research uncovered correlations between urinary catecholamine levels and psychiatric symptoms, such as depression and anxiety (Bergsman, 1959; Carlsson et al., 1959). Recent research has examined the utility of urinary neurotransmitter analysis to categorize subsets of depression and anxiety, and to determine pharmaceutical intervention(s) (Hughes et al., 2004; Otte et al., 2005). Notwithstanding, urinary neurotransmitter analysis can further be used to assess Attention-Deficit-Hyperactivity Disorder (ADHD). Subjects with ADHD tend to have decreased urinary monoamine neurotransmitter levels (specifically, beta-phenylethylamine (PEA)) that can impair mood and attention (Kusaga et al., 2002). What's more, decreased beta-PEA levels may contribute to symptoms of inattentiveness (Berry, 2004). Overall, urinary neurotransmitter assessment can be a useful tool in any clinical practice, especially those managing psychiatric disorders. Urinary neurotransmitter analysis can identify neurotransmitter abnormalities that may contribute to behavioral changes, and thereby allow more appropriate treatment selection (Kahane, 2009). In autism, urinary neurotransmitter analysis has been utilized to examine biochemical abnormalities. As such, urinary serotonin has been the primary urinary neurotransmitter evaluated in autistic individuals. Abnormalities in urinary serotonin have been linked to immunological disturbances. A recent study found consistent elevations in the number of mast cells, along with elevated levels of urinary serotonin, in autistic patients (Castellani et al., 2009). Food, stress, or viruses can stimulate mast cells in the intestines and brains of young children. Localized and systemic immune activation can lead to enhanced cytokine and serotonin release from mast cells and disruption in the lining of the intestines and the blood-brain barrier causing altered neuronal signaling (Castellani et al., 2009). As mentioned previously, a compromised blood-brain barrier permits noxious substances entry into the brain and contribute to neuroinflammation. CNS neurotransmitter abnormalities may result from neuroinflammation leading to behavioral changes. As identified in autistic individuals, raised peripheral glutamate levels may also result from a compromised blood-brain barrier (Moreno-Fuenmayor, et al, 1996, Yip, 2007). Elevated plasma glutamate has been attributed to decreased levels of its rate- limiting enzyme glutamic acid decarboxylase (GAD) in autistic individuals (Shinohe, 2006, Yip, 2007). Specifically, Fatemi and colleagues (2002a) and Yip and others (2007) reported a reduced number of GAD 65 and 67 proteins in Purkinje cells in autistic cerebella. The decreased GAD may be due to autoantibodies specific for GAD, which has been detected in various neurological disorders (Manto et al., 2007). These autoantibodies attack the body's own cells, tissues, and/or organs, causing inflammation and tissue damage. Because GAD converts glutamate to gamma-immunobutyric acid (GABA), a decrease in this enzyme will cause subsequent increases in glutamate levels (Yip, 2007). Clinically, high glutamate levels can be excitotoxic and may lead to neurodegeneration and cognitive dysfunction (Ha et al., 2009). Studies have demonstrated that particular biochemical measurements, such as in plasma amino acid levels, are elevated in children with autism when compared to controls. Autistic children demonstrated elevated levels of plasma glutamate and aspartic acid along with taurine, phenylalanine, asparagine, tyrosine, alanine, and lysine (Moreno-Fuenmayor, Borjas, arrieta, Valera, and Socorro-Candanoza, 1996; Aldred, Moore, Fitzgerald, and Waring, 2003). These amino acid alterations may be caused by immune mediated events, vitamin insufficiency, alterations in neurotransmitter transport, or metabolic derangement. Imaging studies have further revealed abnormalities in autistic individuals, which suggest that abnormal brain growth in many major brain structures such as cerebellum, cerebral cortex, amygdala, hippocampus, corpus collosum, basal ganglia, and brain stem may contribute to behavioral abnormalities in autism (Courchesne et al., 2001; Acosta and Pearl, 2004). Moreover, research shows that reduced cerebellar volume in the autistic brain is due to decreased numbers of Purkinje cells located in the cerebellum. Altered Purkinje cell population can eventually lead to disrupted and weakened motor coordination (Palmen, Engeland, Hof, & Schmitz, 2004). Taken together, abnormal brain growth could be another factor that can contribute to peripheral neurotransmitter imbalances and behavioral manifestation of symptoms. What's more, abnormal neural development and function may result from cytokine recruitment to the CNS and therefore amino acid and neurotransmitter alterations (Cohly & Panja, 2005). Changes in amino acid levels may lead to elevated or insufficient neurotransmitter activity and thus can interfere with normal cognitive development (Aldred, et al., 2003). During infancy and adolescence, maintenance of optimal neuronal signaling is essential to ensure normal development of attentional processes, memory, and overall cognitive function, lending credence to the importance of early intervention through laboratory analysis of neurotransmitters and cytokines. Conclusion Immune system and nervous system activity must be viewed and examined as one system functioning in parallel. It is well established that neurological and immunological abnormalities exist in autistic individuals, however, the relationship between neural and immune function has just recently been emphasized. Food, stress, and viruses can activate immune cells in the periphery and result in CNS disruptions. This may lead to inflammation in the brain and eventually to behavior changes (Castellani et al., 2009). Healthcare practitioners should understand and evaluate the status of the nervous system together with the immune system to best optimize therapeutic intervention(s). Through the development of innovative laboratory tests to analyze neurotransmitters and cytokines, comprehensive information can be obtained to determine neurological and immunological abnormalities. These biochemical measures can serve as biomarkers for clinical symptoms, as well as provide significant guidance for therapeutic selection to reestablish physiological homeostasis and to benefit overall health and wellbeing. References Acosta, M.T., & Pearl, P.L. (2004). Imaging data in autism: From structure to malfunction. Seminars in Pediatric Neurology, 11, 205-213. Aldred, S., Moore, K.M., Fitzgerald, M., & Waring, R.H. (2003). Plasma amino acid levels in children with autism and their families. Journal of Autism and Developmental Disorders, 33, 93-97. American Psychiatric Association. Diagnostic and statistical manual of metal disorders. DSM-IV. 4th ed. Washington, DC: American Psychiatric Association, 1994. Ashwood, P., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R.L., Croen, L.A., et al. (2008). Decreased transforming growth factor beta1 in autism: A potential link between immune dysregulation and impairment in clinical behavioral outcomes. Journal of Neuroimmunology, 204(1-2), 149-153. Ashwood, P., Willis, S., & Van de Water, J. (2006). The immune response in autism: a new frontier for autism research. Journal of Leukocyte Biology, 80, 1-15. Bergsman, A. (1959) The urinary excretion of adrenaline and noradrenaline in some mental diseases; a clinical and experimental study. Acta psychiatrica Scandinavica. Supplementum, 133, 1-107. Berry, M.D. (2004a) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. Journal of Neurochemistry, 90(2), 257-271. Bob, P., Raboch, J., Maes, M., Susta, M., Pavlat, J., Jasova, D. et al. (2009). Depression, traumatic stress and interleukin-6. Journal of Affective Disorders, [Epub ahead of print]. Borish, L.C., & Steinke, J.W. (2003). 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2), S460-S475. Burger, R.A., & Warren, R.P. (1998). Possible immunogenetic basis for autism. Mental Retardation and Developmental Disabilities Research Reviews, 4, 137-141. Cabanlit, M., Wills, S., Goines, P., Ashwood, P., & Van de Water, J. (2007). Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. The New York Academy of Sciences, 1107, 92-103. Carlsson, A., Rasmussen, E.B., & Kristjansen, P. (1959) The urinary excretion of adrenaline and noradrenaline by depressive patients during iproniazid treatment. Journal of Neurochemistry, 4, 321-324. Casamenti, F., Prosperi, C., Scali, C., et al. (1999). Interleukin-1β activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: Implications for Alzheimer's disease. Neuroscience, 91, 831-842. Castellani, M.L., Conti, C.M., Kempuraj, D.J., Salini, V., Vecchiet, J., & Tete, S. (2009). Autism and immunity: revisited study. International Journal of Immunopathology and Pharmacology, 22(1), 15-19. Cohen, D., Pichard, N., Tordjman, S., Baumann, C., Burglen, L., Excoffier, E., Lazar, G., Mazet, P., Pinquier, C., Verloes, A., & Heron, D. (2005). Specific genetic disorders and autism: Clinical contribution towards their identification. Journal of Autism and Developmental Disorders, 35, 103-116. Cohly, H.H., & Panja, A. (2005) Immunological findings in autism. International Review of Neurobiology, 71, 317-341. Courchesne, E., Karns, C.M., Davis, H.R., Ziccardi, R., Carper, R.A., Tigue, Z.D., Chisum, H.J., Moses, P., Pierce, K., Lord, C., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245-254. Crawley, J.N. (2007). Testing hypotheses about autism. Science, 318, 56-57. Dunn, A.J. (1992). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: Comparison with interleukin-1. Journal of Pharmacology and Experimental Therapeutics, 261, 964-969. Dunn, A.J. (2006). Effects of cytokines and infections on brain neurochemistry. Clinical Neuroscience Research, 6(1-2), 52-68. Edelson, S.B., & Cantor, D.S. (2000). The neurotoxic etiology of the autistic spectrum disorder: A replicative study. Toxicology and Industrial Health, 16, 239-247. Ek, M., Kurosawa, M., Lundeberg, T., et al. (1998). Activation of vagal afferents after intravenous injection of interleukin-1β: Role of endogenous prostaglandins. Journal of Neuroscience, 18, 9471-9479. Enstrom, A., Krakowiak, P., Onore, C., Pessah, I.N., Hertz-Picciotto, I., Hansen, R.L. et al. (2009). Increased IgG4 levels in children with autism disorder. Brain, Behavior, and Immunity, 23(3), 389-395. Fatemi, S.H., Earle, J., Kanodia, R., Kist, D., Emamian, E.S., Patterson, P.H., Shi, L., & Sidwell, R. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia. Cellular and Molecular Neurobiology, 22, 25-33. Fatemi, et al. (2002a). Glutamic acid decarbosylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biological Psychiatry, 52, 805-810. Ganong, W.F. (2000). Circumventricular organs: Definition and role in the regulation of endocrine and autonomic function. Clinical and Experimental Pharmacology and Physiology, 27(5-6), 422-427. Glessner, J.T., Wang, K., Cai, G., Korvatska, O., Kim, C.E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, [Epub ahead of print]. Goehler, L.E., Gaykema, R.P., Nguyen, K.T. et al. (1999). Interleukin-1β in immune cells of the abdominal vagus nerve: A link between the immune and nervous systems? Journal of Neuroscience, 19, 2799-2806. Gutierrez, E.G., Banks, W.A., & Kastin, A.J. (1993). Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. Journal of Neuroimmunology, 47, 169-176. Gutierrez, E.G., Banks, W.A., & Kastin, A.J. (1994). Blood-borne interleukin-1 receptor antagonist crosses the blood brain barrier. Journal of Neuroimmunology, 55, 153-160. Ha, J.S., Leem C.S., Maeng, J.S., Kwon, K.S., & Park, S.S. (2009). Chronic glutamate toxicity in mouse cortical neuron culture. Brain Research, [Epub ahead of print]. Hansen, M.K., Taishi, P., Chen, Z. et al. (1998). Vagotomy blocks the induction of interleukin-1β (IL-1β) mRNA in the brain of rats in response to systemic IL-1β. Journal of Neuroscience, 18, 2247-2253. Huang, T.L., & O'Banion, M.K. (1998). Interleukin-1β and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. Journal of Neuroscience, 71, 1436-1442. Hughes, J.W., Watkins, L., Blumenthal, J.A., Kuhn, C., & Sherwood, A. (2004) Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. Journal of Psychosomatic Research, 57(4), 353-358. Iversson, S.A., Bjerre, L., Vegfors, P., & Ahlfors, K. (1990). Autism as one of several abnormalities in two children with congenital cytomegalovirus infection. Neuropediatrics, 21, 102-103. Johansson, S., Berg, L., Hall, H., & Hoglund, P. (2005). NK cells: Elusive players in autoimmunity. Trends in Immunology, 26, 613-618. Kahane, A. (2009). Urinary Neurotransmitter Analysis as a Biomarker for Psychiatric Disorders. Townsend Letter, 1, 70-72. Kibersti, P., & Roberts, L. (2002). It's Not Just the Genes. Science, 296, 685. Kronfol, Z., & Remick, D. (2000). Cytokines and the brain: implications for clinical psychiatry. American Journal of Psychiatry, 158(7), 1163-1164. Kusaga, A., Yamashita, Y., Koeda, T., Hiratani, M., Kaneko, M., Yamada, S., & Matsuishi, T. (2002) Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Annals of Neurology, 52(3), 372-374. Layé, S., Bluthé, R.M., Kent, S. et al. (1995). Subdiphragmatic vagotomy blocks induction of Il-1 mRNA in mice brain in response to peripheral LPS. American Journal of Physiology, 268, R1327-R1331. Luk, W.P, Zhang, Y., White, T.D. et al. (1999). Adenosine. A mediator of interleukin-1β ??induced hippocampol synaptic inhibition. Journal of Neuroscience, 19, 4238-4244. Manto, M.U., Laute, M.A., Aguera, M., Rogemond, V., Pandolfo, M., & Honnorat, J. (2007). Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Annals of Neurology, 61(6), 544-551. Maier, S.F., Goehler, L.E., Fleshner, M. et al. (1998). The role of the vagus nerve in cytokine-to-brain communication. Annals of the New York Academy of Sciences, 840, 289-300. Moreno-Fuenmayor, H., Borjas, L., Arrieta, A., Valera, V., & Socorro-Candanoza, L. (1996). Plasma excitatory amino acids in autism. The Journal of Clinical Investigation, 37(2), 113-128. Otte, C., Neylan, T.C., Pipkin, S.S., Browner, W.S., & Whooley, M.A. (2005) Depressive symptoms and 24-hour urinary norepinephrine excretion levels in patients with coronary disease: findings from the Heart and Soul Study. American Journal of Psychiatry, 162(11), 2139-2145. Palmen, S., Engelan, H., Hof, P.R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127, 2572-2583. Pavlov, V.A., Wang, H., Czura, C.J., Friedman, S.G., & Tracey, K.J. (2003). The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Molecular Medicine, 9(5-8), 125-134. Polleux, F., & Lauder, J.M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 303-317. Shi, L., Fatemi, S.H., Sidwell, R.W. & Patterson, P.H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. Journal of Neuroscience, 23, 297-302. Shinohe, et al. (2006). Increased serum levels of glutamate in adult patients with autism. Progress in Neuro-Psychopharmacology and Biological Psychiastry, 30, 1472-1477. Yip, J., Soghomonia, J.J., & Blatt, G.J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: Pathophysiological implications. Acta Neuropathology, 113, 559-568. Vojdani, A., Campbell, A.W., Anyanwu, E., Kashanian, A., Bock, K. & Vojdani, E. (2002). Antibodies to neuron-specific antigens in children with autism: Possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Stretoccoccus group A. Journal of Neuroimmunology, 129, 168-177. Vojdani, A., Mumper, E., Granpeesheh, D., Mielke, L., Traver, D., Bock, K., et al. (2008). Low natural killer cell cytotoxic activity in autism: The role of glutathione, IL-2 and IL-15. Journal of Neuroimmunology, 205(1-2), 148-154. Wakefield, A.J., Murch, S.H., Anthony, A., Linnell, J., Casson, D.M., Malik, M., Berelowitz, M., Dhillon, A.P., Thomson, M.A., Valentine, A., Davies, S.E., & Walker-Smith, J.A. (1998). Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet, 351, 637-641. Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J.T., Abrahams, B.S., et al. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorder. Nature, [Epub ahead of print] Zalcman, S., Gree-Johnson, J.M., Murray, L. et al. (1994). Cytokine-specific central monoamine alterations induced by interleukin-1-2, and -6. Brain Research, 15, 287-290.
علم المناعة العصبية من اضطراب طيف التوحد.
الناقلات العصبية والمؤشرات الحيوية التنبؤية للاستجابة للعلاج تعاطي المخدرات
علم المناعة العصبية من اضطراب طيف التوحد.
معالجة عدم التوازن الغدة الكظرية: مستقبل الغدة الكظرية الصحة
Avipaxin والتحوير من الجهاز المناعي.
الأداة المساعدة السريرية البولية تحليل ناقل عصبي: نظرة عامة.
Daxitrol لا غنى عنه: A أسلوب جديد لضبط الشهوة.
تفاعلات فرط الحساسية وطرق كشفها.
مثيلة: الأساسي لسلامة الجهاز العصبي
A-أسفل أعلى استراتيجية جديدة لمعالجة الاختلالات اللاإرادي.
تحميل PDF

علم المناعة العصبية طيف التوحد اضطراب

ديفيد مارك، MSA؛ كيلي أولسون، PhDa

aNeuroScience، وشركة، 373 شارع 280، أسولا، WI 54020، الولايات المتحدة الأمريكية
عنوان المراسلات إلى: david.marc@neurorelief.com
ملخص

التوحد هو اضطراب في النمو تتميز الشذوذات المناعية والعصبية. وجرى بحث دور السيتوكينات في الفيزيولوجيا المرضية لمرض التوحد مما يدل على العلاقة مع المتغيرة نفاذية حاجز الدم في الدماغ وneuroinflammation لاحق. التوظيف خلوى في الجهاز العصبي المركزي قد يؤدي إلى تغييرها يشير العصبي ومظهر من مظاهر السلوك أعراض التوحد. محصنة بوساطة أحداث أخرى مثل التغييرات في عدد ونشاط الخلايا القاتلة الطبيعية، الضامة، المناعية، والجلوتاثيون يمكن أن تسهم في الخلايا العصبية الإشارات والعصبي الاختلالات المتغيرة. والغرض من هذا الاستعراض هو دراسة العلاقة بين جهاز المناعة وخلل الجهاز العصبي لتحديد المؤشرات الحيوية لاضطراب طيف التوحد. سنبحث فائدة السيتوكينات في الدم ويحلل العصبي البولية والمؤشرات الحيوية لمرض التوحد.


مقدمة

التوحد هو اضطراب النمو المتفشي تتسم بالتطور ضعف التفاعل الاجتماعي والتواصل، وذخيرة مقيد بشكل ملحوظ من الأنشطة والاهتمامات (جمعية الأمريكية للطب النفسي، 1994). المسببات الدقيق لمرض التوحد ما زالت غير معروفة إلى حد كبير، ومع ذلك، فقد ظهرت الكتابات تشير إلى وراثية، العصبية، المناعية، والمساهمات البيئية. العوامل المناعية والبيئية، مثل النظام الغذائي، والعدوى، والاكسيوبيوتك تلعب أدوارا حاسمة في تطور مرض التوحد. (Ivarsson، Bjerre، Vegfors، وAhlfors، 1990؛. يكفيلد وآخرون، 1998؛ Edelson وكانتور، 2002؛ فاطمي وآخرون، 2002؛. Kibersti وروبرتس، 2002). تشوهات في وظيفة الأنزيمية (فاطمي وآخرون، 2002A)، الأجسام المضادة للبروتينات الدماغ (Vojdani وآخرون، 2002)، والتهابات الأمهات أثناء الحمل (شي وآخرون، 2003) وقد ورد في السكان التوحد. بالإضافة إلى ذلك، التغيرات المرضية في الجينات المسؤولة في الزخرفة من الجهاز العصبي المركزي، المسارات البيوكيميائية، وقد لوحظ تطور التشعبات ونقاط الاشتباك العصبي، والجينات المرتبطة مع نظام المناعة في هذه الفئة من السكان (Burber وارن، 1998؛ Palmen، Engeland، هوف وشميتز، 2004؛ Polleux ولودر، 2004؛ كوهين وآخرون، 2005؛ كراولي، 2007؛ Glessner وآخرون، 2009؛. انغ وآخرون، 2009).

ومن المثير للاهتمام، وهي هيئة الناشئة من الأدلة تتزايد بشأن الصلة بين الوظيفة المناعية غير طبيعي وضعف الجهاز العصبي الذين يعانون من اضطرابات طيف التوحد. في الأوقات الحرجة للتنمية الرضع، قد يؤدي ديسريغولاتيون المناعة في الإفراج عن الجزيئات المناعية، مثل كيموكينات والسيتوكينات، مما يؤدي إلى تطوير الخلايا العصبية المعدلة وظيفة العصبية (Cohly وPanja، 2005).

كيموكينات والسيتوكينات هي بروتينات التي تدير الاتجار الخلايا المناعية وترتيب الخلوي للأجهزة المناعة وتحديد الاستجابات المناعية المناسبة (Borish وSteinke، 2003). ويمكن نقل السيتوكينات و / أو تصنيعه في الجهاز العصبي المركزي (CNS) وبالتالي إقامة اتصال بين الخلايا المناعية والخلايا العصبية الطرفية CNS (دان، 2006). والغرض من هذا الاستعراض هو تحديد التشوهات العصبية والمناعية الموجودة في الأشخاص الذين يعانون من مرض التوحد. وعلاوة على ذلك، فإنه أصبح من الواضح جدا أن اختبار العلامات البيولوجية neuroimmune لمرض التوحد يمكن التعرف على هذه التشوهات وضمان فعالية العلاجية.


السيتوكينات والعصبي

السيتوكينات الصادرة عن الخلايا المناعية، وخاصة انترلوكين 1 (IL-1) ونخر الورم عامل α (TNF-α)، والتواصل مع الجهاز العصبي المركزي للتأثير على النشاط العصبي وتعديل السلوكيات، والإفراج عن هرمون، و "طبيعية" وظيفة اللاإرادي (دن ، 2006). يمكن السيتوكينات يدخل الدماغ عن طريق آليات مختلفة بما في ذلك النقل النشط أو الدخول المباشر عبر حاجز الدم في الدماغ خطر. وقد تم توثيق آليات النقل النشطة التي تنطوي على نظام تشبع لIL-1 و TNF-α (دن، 1992؛ جوتيريز، البنوك، وKastin، 1993؛ جوتيريز، البنوك، Kastin، 1994). بالإضافة إلى ذلك، وجد ماير وزملاؤه (1998) أن السيتوكينات يمكن أن تدخل مباشرة على الجهاز العصبي المركزي في مناطق محيطة بالبطينات، في الغالب الباحة المنخفضة، حيث حاجز الدم في الدماغ هو أقل واقية (بافلوف وآخرون، 2003). وتشمل المناطق محيطة بالبطينات الدخول الأخرى خلوى المحتملين الغدة الصنوبرية، الجهاز تحت القبو، organum الوعائية من الانتهائي الصفيحة، الضفيرة المشيمية، سماحة متوسط، جهاز subcommissural، والنخامية الخلفية (Ganong، 2000).

عند الدخول إلى الجهاز العصبي المركزي، السيتوكينات تعزيز الإشارات التنظيمية في الدماغ، من خلال زيادة من الغدة النخامية، الغدة الكظرية (HPA) النشاط محور والعصب الحائر efferents، والتي يمكن تعديل الوضع المناعي الطرفية. تعزيز HPA الإفراج محور الادرينالين والكورتيزول يمكن أن تقلل من الإفراج عن السيتوكينات الموالية للالتهابات من الضامة في محيط (بافلوف وآخرون، 2003). بالإضافة إلى ذلك، يمكن لزيادة النشاط صادر المبهم تؤدي إلى الإفراج الأستيل كولين من النهايات العصبية الطرفية الحركية، والحد من إطلاق السيتوكينات الموالية للالتهابات (بافلوف وآخرون، 2003). ولذلك فمن الواضح أن نظام المناعة والجهاز العصبي التواصل للحفاظ على التوازن، ولكن في ظل التحديات المفرطة المناعية يمكن إحداث تغييرات في الإشارات العصبية تتطور.

وقد أظهرت الدراسات أن تفعيل الطرفية السيتوكينات يمكن أن يؤدي إلى إطلاق الجهاز العصبي المركزي من مختلف الناقلات العصبية. على وجه التحديد، IL-1 الإدارة قد تعزز الإفراج CNS من norepineprhine، السيروتونين، الدوبامين، الغلوتامات، وجاما أمينو زبدي حمض (GABA) (دن، 1992؛ Zalcman وآخرون، 1994؛. Casamenti وآخرون، 1999؛. لوك وآخرون، 1999؛. هوانغ وO'Banion، 1998). مع تعزيز مبيعاتها من هذه الناقلات العصبية، تغييرات عصبية وسلوكية هامة ارشح. وقد أظهرت الأبحاث مدى التحديات المناعية يمكن أن يغير العصبي مما يؤدي إلى تغيرات سلوكية واضطرابات نفسية (قرنفل وريميك، 2000). على سبيل المثال، وقد ارتبطت مستويات مرتفعة من انترلوكين 6 (IL-6) مع أعراض الاكتئاب (بوب وآخرون، 2009).

في التوحد، تغيير في وظيفة الجهاز المناعي يمكن أن تسهم في الإشارات العصبية ضعف. آلية ممكنة تساهم في ضعف الخلايا العصبية في الدماغ التوحد هي نقل المواد الضارة عبر حاجز الدم في الدماغ إلى الجهاز العصبي المركزي مما يؤدي إلى أمراض المناعة الذاتية. وقد أظهرت الدراسات كيف السيتوكينات، كيموكينات، المناعية، والخلايا القاتلة الطبيعية تعزز التوظيف من المواد الكيميائية الضارة في أدمغة الأفراد الذين يعانون من التوحد، وكذلك تساهم في المناعة الذاتية (أشووود وآخرون، 2006). كيموكينات Proinflammatory، مثل الوحيدات الكيميائي البروتين 1 (MCP-1) والغدة الصعترية التنظيم تفعيل chemokine (TARC)، جنبا إلى جنب مع السيتوكينات، مثل TNF-α، كانت مرتفعة باستمرار في أدمغة الأفراد المصابين بالتوحد (Cohly وPanja، 2005). نقل أو توليف السيتوكينات في الدماغ يمكن أن تسهم في neuroinflammation والاختلالات العصبي الممكنة (Cohly وPanja، 2005). وعلاوة على ذلك، وجد أشووود وزملاؤه (2008) أن انخفاض مستويات خلوى تغييري، وتحويل عامل النمو β1 (TGF-β1)، في الأطفال الذين يعانون من التوحد ساهمت في التقلبات من السلوكيات التكيفية وpredisposal للاستجابات المناعة الذاتية. المناعة الذاتية يمكن أن يكون ضارا الإشارات العصبية الطبيعية، ويؤدي إلى الانحرافات السلوكية كبيرة (أشووود وآخرون، 2006). Vojdani وزملاؤه (2008) عن انخفاض في حركة الخلايا الطبيعية القاتلة في الأطفال المصابين بالتوحد لديهم مستويات منخفضة من داخل الخلايا الجلوتاثيون، IL-2، وIL-15. ارتبط انخفاض نشاط الخلايا القاتلة الطبيعية مع المناعة الذاتية من خلال تغيير إنتاج السيتوكينات (جوهانسون وآخرون، 2005). وأخيرا، أظهرت Entrom وزملاؤه (2009) مرتفعة المناعي G4 (IgG4) الإنتاج في الأطفال الذين يعانون من التوحد. وقد تم تحديد الأجسام المضادة مفتش مرتفعة ضد بروتينات الدماغ محددة في منطقة ما تحت المهاد والمهاد من الأطفال الذين يعانون من التوحد، مما يشير مرة أخرى المناعة الذاتية (Cabanlit وآخرون، 2007).

على الرغم من أن الدراسات محدودة على التوحد والمناعة الذاتية موجودة، فقد تم الافتراض بأن النقل الزائدة وتوليف كيموكينات proinflammatory، السيتوكينات، والمناعية من المحيط إلى الجهاز العصبي المركزي يساهم في وضع استجابات المناعة الذاتية (Cohly وPanja، 2005). قد يؤدي المناعة الذاتية لdysregulated الإشارات العصبية تسبب مظاهر سلوكية أعراض التوحد. لذلك، وتقييم وظيفة الجهاز المناعي والجهاز العصبي يمكن أن توفر الأهداف الحيوية لعلاج المرضى الذين يعانون من هذه الانحرافات السلوكية.


الجهاز العصبي المؤشرات الحيوية والتوحد

المؤشرات الحيوية هي مواد تستخدم كمؤشرات لدولة البيولوجية. وقد كشفت الأبحاث فائدة سريرية من الناقلات العصبية البولية والمؤشرات الحيوية عملية لاقترانه العصبي (Kusaga وآخرون، 2002؛. هيوز وآخرون، 2004). تحليل البول هو الناقل العصبي، طريقة مبتكرة الغازية الحد الأدنى لتقييم مستويات الناقل العصبي الطرفية، ولها مجموعة واسعة من البيانات لدعم فائدته في الممارسة السريرية. في عام 1950، كشفت النقاب عن علاقة بين مستويات الكاتيكولامينات البولية وأعراض نفسية، مثل الاكتئاب والقلق (Bergsman 1959؛ كارلسون وآخرون، 1959). درست البحوث التي أجريت مؤخرا في جدوى التحليل العصبي البولية لتصنيف مجموعات فرعية من الاكتئاب والقلق، وتحديد التدخلات الدوائية (ق) (هيوز وآخرون، 2004؛. اوتي وآخرون، 2005). بالرغم من ذلك، يمكن أن تزيد من تحليل البول العصبي استخدامها لتقييم اضطراب نقص الانتباه فرط النشاط، (ADHD). الموضوعات مع ADHD يميلون إلى انخفضت البولية مستويات مثبطات الناقل العصبي (على وجه التحديد، بيتا phenylethylamine (PEA)) يمكن أن تضعف المزاج والانتباه (Kusaga وآخرون، 2002). ما هو أكثر من ذلك، انخفضت مستويات بيتا PEA يمكن أن تسهم في أعراض عدم الانتباه (بيري، 2004).
عموما، تقييم عصبي البول يمكن أن تكون أداة مفيدة في أي الممارسة السريرية، وخاصة أولئك الذين يديرون الاضطرابات النفسية. تحليل البول العصبي يمكن تحديد التشوهات العصبي التي قد تسهم في التغيرات السلوكية، وبالتالي تسمح اختيار العلاج الأنسب (كاهانا، 2009).
في التوحد، وقد تم استخدام التحليل العصبي البول لفحص شذوذ البيوكيميائية. على هذا النحو، كان السيروتونين الناقل العصبي البولية البولية الأساسي تقييمها في الأفراد الذين يعانون من التوحد. وقد تم ربط خلل في السيروتونين البولية الاضطرابات المناعية. وجدت دراسة حديثة ارتفاعات مستمرة في عدد الخلايا البدينة، جنبا إلى جنب مع مستويات مرتفعة من السيروتونين البول، في المرضى الذين يعانون من التوحد (كاستيلاني وآخرون، 2009). المواد الغذائية، يمكن أن الإجهاد، أو الفيروسات تحفيز الخلايا البدينة في الأمعاء وأدمغة الأطفال الصغار. مترجمة وتنشيط جهاز المناعة الجهازية يمكن أن يؤدي إلى تعزيز خلوى وإطلاق السيروتونين من الخلايا البدينة واضطراب في بطانة الأمعاء وحاجز الدم في المخ مما يؤدي غيرت الإشارات العصبية (كاستيلاني وآخرون، 2009). كما ذكر سابقا، يسمح حاجز الدم في الدماغ خطر دخول المواد الضارة في الدماغ وتساهم في neuroinflammation. CNS تشوهات العصبي قد تنجم عن neuroinflammation مما يؤدي إلى تغيرات سلوكية.
كما تم تحديدها في الأفراد الذين يعانون من التوحد، رفعت مستويات الصوديوم المحيطية قد يؤدي أيضا من حاجز للخطر الدم في الدماغ (مورينو فوينمايور، وآخرون، 1996، ييب، 2007). ويعزى ارتفاع الصوديوم في البلازما إلى انخفاض مستويات rate- في الحد من انزيم كربوكسيل حمض الجلوتاميك (GAD) في الأفراد الذين يعانون من التوحد (Shinohe، 2006، ييب، 2007). على وجه التحديد، ذكرت فاطمي وزملاؤه (2002A) وييب وآخرون (2007) انخفاض عدد GAD 65 و 67 البروتينات في الخلايا العصبية في مخيخات التوحد. وGAD انخفضت قد يكون راجعا إلى الأجسام المضادة المحددة لإدماج المرأة في التنمية، والتي تم الكشف عنها في مختلف الاضطرابات العصبية (مانتو وآخرون، 2007). هذه الأجسام المضادة تهاجم الجسم نفسه الخلايا والأنسجة، و / أو أجهزة، مما يسبب التهاب وتلف الأنسجة. لأن GAD يحول الغلوتامات لجاما immunobutyric حمض (GABA)، فإن الانخفاض في معدلات هذا الإنزيم يسبب زيادة لاحقة في مستويات الصوديوم (ييب، 2007). يمكن سريريا مستويات عالية الغلوتامات يكون excitotoxic المواد ويمكن أن تؤدي إلى تنكس عصبي والخلل المعرفي (ها وآخرون، 2009).
وقد أثبتت الدراسات أن القياسات البيوكيميائية معينة، كما هو الحال في البلازما مستويات الأحماض الأمينية، وارتقى في الأطفال الذين يعانون من التوحد بالمقارنة مع الضوابط. أظهر الأطفال الذين يعانون من التوحد مستويات مرتفعة من الصوديوم في البلازما وحمض الأسبارتيك جنبا إلى جنب مع التورين، الفنيل الأنين، الأسباراجين، التيروزين، ألانين، ويسين (مورينو فوينمايور، بورجاس، اريتا، فاليرا، وسوكورو-Candanoza، 1996؛ ألدريد، مور، فيتزجيرالد، و ارنج، 2003). قد يكون سبب هذه التغيرات الأحماض الأمينية التي مأمن الأحداث بوساطة، وفيتامين القصور، وتعديلات في النقل الناقلات العصبيه، أو اضطراب التمثيل الغذائي.
وكذلك كشفت دراسات التصوير تشوهات في الأفراد الذين يعانون من التوحد، والتي تشير إلى أن نمو الدماغ غير طبيعي في العديد من الهياكل الدماغ الكبرى مثل المخيخ، قشرة الدماغ، اللوزة، الحصين، الإحضار collosum، العقد القاعدية، وجذع الدماغ يمكن أن تسهم في الانحرافات السلوكية في مرض التوحد (Courchesne وآخرون، 2001؛. أكوستا واللؤلؤ، 2004). وعلاوة على ذلك، هو أنه يبين البحث أن انخفاض حجم المخيخ في الدماغ التوحد بسبب انخفاض أعداد الخلايا العصبية تقع في المخيخ. غيرت السكان الخلية العصبية يمكن أن تؤدي في النهاية إلى اضطراب وضعف التنسيق الحركي (Palmen، Engeland، هوف، وشميتز، 2004). مجتمعة، يمكن أن نمو الدماغ غير طبيعي أن يكون عامل آخر يمكن أن تسهم في الاختلالات العصبي الطرفية ومظاهر السلوك الأعراض.
ما هو أكثر من ذلك، التطور العصبي الشاذ وظيفة قد تنجم عن تجنيد خلوى في الجهاز العصبي المركزي وبالتالي الأحماض الأمينية والعصبي التعديلات (Cohly وPanja، 2005). التغيرات في مستويات الأحماض الأمينية قد يؤدي إلى ارتفاع أو عدم كفاية النشاط العصبي، وبالتالي يمكن أن تتداخل مع التطور الطبيعي المعرفية (ألدريد، وآخرون، 2003). خلال مرحلة الطفولة والمراهقة، وصيانة المثلى الإشارات العصبية ضرورية لضمان التطور الطبيعي للعمليات الإنتباه والذاكرة والوظائف الإدراكية العامة، يضفي مصداقية على أهمية التدخل المبكر من خلال التحليل المختبري من الناقلات العصبية والسيتوكينات.

استنتاج

جهاز المناعة، ونشاط الجهاز العصبي ويجب أن ينظر وفحص كنظام واحد يعمل في نفس الوقت. ومن الثابت أن التشوهات العصبية والمناعية موجودة في الأفراد الذين يعانون من التوحد، ومع ذلك، فقد تم مؤخرا وأكد على العلاقة بين وظيفة العصبية والمناعية. المواد الغذائية، يمكن أن الإجهاد، والفيروسات تنشيط الخلايا المناعية في محيط ويؤدي إلى اضطرابات الجهاز العصبي المركزي. وهذا قد يؤدي إلى التهاب في الدماغ، وفي نهاية المطاف إلى تغيير السلوك (كاستيلاني وآخرون، 2009). يجب أن ممارسي الرعاية الصحية على فهم وتقييم حالة الجهاز العصبي جنبا إلى جنب مع نظام المناعة لأفضل تحسين التدخل العلاجي (ق). من خلال تطوير الاختبارات المعملية مبتكرة لتحليل الناقلات العصبية والسيتوكينات، ويمكن الحصول على معلومات شاملة لتحديد التشوهات العصبية والمناعية. ويمكن لهذه التدابير الكيميائية الحيوية بمثابة المؤشرات الحيوية للأعراض السريرية، فضلا عن توفير التوجيه كبير لاختيار العلاجية بغية إعادة التوازن الفسيولوجي والاستفادة الصحة العامة والرفاه.

المراجع

أكوستا، M.T.، واللؤلؤ، P.L. (2004). بيانات التصوير في التوحد: من الهيكل لعطل. حلقات دراسية في طب الأطفال طب الأعصاب، 11، 205-213.
ألدريد، S.، مور، KM، فيتزجيرالد، M.، وارنج، RH (2003). البلازما مستويات حمض الأميني في الأطفال المصابين بالتوحد وأسرهم. مجلة للتوحد واضطرابات النمو، 33، 93-97.
جمعية الأمريكية للطب النفسي. الدليل التشخيصي والإحصائي للاضطرابات المعادن. DSM-IV. الطبعة 4. واشنطن، DC: الرابطة الأمريكية للطب النفسي، 1994.
أشووود، P.، Enstrom، A.، Krakowiak، P.، هيرتز Picciotto، I.، هانسن، RL، Croen، LA، وآخرون. (2008). انخفض عامل النمو المحول beta1 في التوحد: ارتباط محتمل بين التقلبات المناعة وضعف في النتائج السلوكية السريرية. مجلة علم المناعة العصبية، 204 (1-2)، 149-153.
أشووود، P.، ويليس، S.، وفان دي المياه، J. (2006). الاستجابة المناعية في مرض التوحد: جبهة جديدة لأبحاث مرض التوحد. مجلة علم الأحياء خلايا الدم البيضاء، 80، 1-15.
Bergsman، A. (1959) وإفراز البول من الأدرينالين والنورادرينالين في بعض الأمراض العقلية؛ دراسة سريرية وتجريبية. اكتا psychiatrica Scandinavica. Supplementum، 133، 1-107.
التوت، MD (2004A) الثدييات العصبي الأمينات تتبع نظام المركزية. الأمفيتامينات الدوائية، neuromodulators فيزيولوجي. مجلة الكيمياء العصبية، و 90 (2)، 257-271.
بوب، P.، Raboch، J.، مايس، M.، Susta، M.، Pavlat، J.، Jasova، D. آخرون. (2009). الاكتئاب والصدمة وانترلوكين 6. مجلة للاضطرابات العاطفية، [الإليكتروني (Epub) قبل الطباعة].
Borish، L.C.، وSteinke، J.W. (2003). 2. السيتوكينات و chemokines. مجلة الحساسية والمناعة السريرية، 111 (2)، S460، S475.
برغر، قانون الجمهورية، وارن، R.P. (1998). أساس مستمنع محتمل لمرض التوحد. التخلف العقلي والإعاقات التنموية البحوث تعليقات، 4، 137-141.
Cabanlit، M.، والوصايا، S.، جوينز، P.، أشووود، P.، وفان دي المياه، J. (2007). الأجسام المضادة الدماغ محددة في البلازما من الموضوعات مع اضطراب طيف التوحد. أكاديمية نيويورك للعلوم، 1107، 92-103.
كارلسون، A.، راسموسن، EB، وKristjansen، P. (1959) وإفراز البول من الأدرينالين والنورادرينالين من قبل المرضى الاكتئاب خلال فترة العلاج إيبرونيازيد. مجلة الكيمياء العصبية، 4، 321-324.
Casamenti، F.، بروسبيري، C.، سكالي، C.، وآخرون. (1999). انترلوكين 1β ينشط الخلايا الدبقية الدماغ الأمامي ويزيد من إنتاج أكسيد النيتريك والغلوتامات القشرية والإفراج GABA في الجسم الحي: الآثار المترتبة على مرض الزهايمر. علم الأعصاب، 91، 831-842.
كاستيلاني، ML، كونتي، CM، Kempuraj، DJ، ساليني، V.، Vecchiet، J.، & تيتي، S. (2009). التوحد والمناعة: دراسة إعادة النظر. المجلة الدولية للالباثولوجيا المناعية والصيدلة، 22 (1)، 15-19.
كوهين، D.، Pichard، N.، Tordjman، S.، باومان، C.، Burglen، L.، Excoffier، E.، لازار، G.، مازيت، P.، Pinquier، C.، Verloes، A.، وهيرون، D. (2005). اضطرابات معينة الوراثية ومرض التوحد: مساهمة السريرية نحو التعرف عليهم. مجلة للتوحد واضطرابات النمو، 35، 103-116.
Cohly، HH، وPanja، A. (2005) النتائج المناعية في مرض التوحد. المجلة الدولية للبيولوجيا الأعصاب، 71، 317-341.
Courchesne، E.، كارنس، CM، ديفيس، HR، Ziccardi، R.، كاربر، RA، Tigue، ZD، Chisum، HJ، موسى، P.، بيرس، K.، يا رب، C.، وآخرون. (2001). أنماط نمو الدماغ غير عادية في وقت مبكر من الحياة في المرضى الذين يعانون من اضطراب التوحد: دراسة التصوير بالرنين المغناطيسي. الأعصاب، 57، 245-254.
كراولي، J.N. (2007). اختبار الفرضيات حول مرض التوحد. العلوم، 318، 56-57.
دن، A.J. (1992). تفعيل الناجم عن الذيفان الداخلي الكاتيكولامينات الدماغي والتمثيل الغذائي السيروتونين: مقارنة مع انترلوكين 1. مجلة علم الصيدلة والعلاج التجريبي، 261، 964-969.
دن، A.J. (2006). آثار السيتوكينات والتهابات في الكيمياء العصبية في الدماغ. السريرية علم الأعصاب البحوث، 6 (2/1)، 52-68.
Edelson، S.B.، وكانتور، D.S. (2000). المسببات أعصاب من اضطراب طيف التوحد: دراسة تنسخي. علم السموم والصحة الصناعية، 16، 239-247.
خلفا، M.، كوروساوا، M.، Lundeberg، T.، وآخرون. (1998). تفعيل afferents العصب الحائر بعد الحقن في الوريد من انترلوكين 1β: دور البروستاجلاندين الذاتية. مجلة علم الأعصاب، 18، 9471-9479.
Enstrom، A.، Krakowiak، P.، Onore، C.، عيد الفصح، IN، هيرتز Picciotto، I.، هانسن، RL وآخرون. (2009). زيادة مستويات IgG4 في الأطفال الذين يعانون من اضطراب التوحد. الدماغ والسلوك والحصانة، 23 (3)، 389-395.
فاطمي، SH، إيرل، J.، Kanodia، R.، كيست، D.، Emamian، ES، باترسون، PH، شي، L.، وسيدويل، R. (2002). العدوى الفيروسية قبل الولادة ويؤدي إلى ضمور الخلايا الهرمية وضخامة الرأس في مرحلة البلوغ: الآثار المترتبة على نشأة التوحد وانفصام الشخصية. الخلوية والجزيئية بيولوجيا الأعصاب، 22، 25-33.
فاطمي، وآخرون. (2002A). حمض الجلوتاميك decarbosylase 65 ويتم تخفيض 67 كيلو دالتون البروتينات في الجدارية التوحد والقشور المخيخ. الطب النفسي البيولوجي، 52، 805-810.
Ganong، W.F. (2000). أجهزة محيطة بالبطينات: تعريف ودورها في تنظيم الغدد الصماء وظيفة اللاإرادي. السريرية والتجريبية الصيدلة وعلم وظائف الأعضاء، 27 (5-6)، 422-427.
Glessner، JT وانغ، K.، كاي، G.، Korvatska، O.، كيم، CE، الخشب، S.، وآخرون. (2009). التوحد الجينوم على نطاق التباين في عدد النسخ يكشف بتحول والجينات العصبية. الطبيعة، [قبل الإليكتروني (Epub) من طباعة].
Goehler، L.E.، Gaykema، R.P.، نجوين، K.T. وآخرون. (1999). انترلوكين 1β في الخلايا المناعية للعصب المبهم في البطن: ويربط بين جهاز المناعة والجهاز العصبي؟ مجلة علم الأعصاب، 19، 2799-2806.
جوتيريز، على سبيل المثال، البنوك، W.A.، وKastin، A.J. (1993). ويتم نقل الورم الفئران عامل نخر ألفا من الدم الى الدماغ في الماوس. مجلة علم المناعة العصبية، 47، 169-176.
جوتيريز، على سبيل المثال، البنوك، W.A.، وKastin، A.J. (1994). المنقولة عن طريق الدم انترلوكين 1 مستقبلات يعبر حاجز الدم في الدماغ. مجلة علم المناعة العصبية، 55، 153-160.
ها، JS، الليم CS، Maeng، JS، كوون، KS، وبارك، SS (2009). سمية الغلوتامات المزمنة في الماوس ثقافة العصبية القشرية. أبحاث الدماغ، [الإليكتروني (Epub) قبل الطباعة].
هانسن، M.K.، تيشي، P.، تشن، Z. وآخرون. (1998). كتل قطع المبهم تحريض انترلوكين 1β (IL-1β) مرنا في دماغ الفئران استجابة لالنظامية IL-1β. مجلة علم الأعصاب، 18، 2247-2253.
هوانغ، T.L.، وO'Banion، M.K. (1998). انترلوكين 1β وعامل نخر الورم ألفا قمع ديكساميثازون تحريض مخلقة الجلوتامين في الخلايا النجمية الماوس الأولية. مجلة علم الأعصاب، 71، 1436-1442.
هيوز، JW، واتكينز، L.، بلومنتال، JA، كون، C.، وشيروود، ترتبط A. (2004) الاكتئاب والقلق أعراض زيادة على مدار 24 ساعة بافراز البولية إفراز بين النساء في منتصف العمر صحية. مجلة البحوث النفسي، 57 (4)، 353-358.
Iversson، SA، Bjerre، L.، Vegfors، P.، وAhlfors، K. (1990). التوحد واحدة من عدة تشوهات في اثنين من الأطفال الذين يعانون من عدوى الفيروس المضخم للخلايا الخلقية. Neuropediatrics، 21، 102-103.
يوهانسون، S.، بيرغ، L.، قاعة، H.، & Hoglund، P. (2005). الخلايا القاتلة الطبيعية: اللاعبين الهارب في المناعة الذاتية. اتجاهات في علم المناعة، 26، 613-618.
كاهانا، A. (2009). البولية تحليل ناقل عصبي والعلامات البيولوجية للاضطرابات النفسية. تاونسند رسالة، 1، 70-72.
Kibersti، P.، وروبرتس، L. (2002). انها ليست مجرد الجينات. العلوم، 296، 685.
قرنفل، Z.، وريميك، D. (2000). السيتوكينات والدماغ: الآثار المترتبة على الطب النفسي السريري. المجلة الأمريكية للطب النفسي، 158 (7)، 1163-1164.
Kusaga، A.، ياماشيتا، Y.، Koeda، T.، Hiratani، M.، كانيكو، M.، يامادا، S.، وMatsuishi، T. (2002) زيادة البول phenylethylamine بعد العلاج الميثيلفينيديت في الأطفال الذين يعانون من ADHD. دورية حوليات طب الاعصاب، 52 (3)، 372-374.
أونلي، S.، Bluthé، R.M.، كينت، S. وآخرون. (1995). Subdiphragmatic كتل قطع المبهم تحريض ايل-1 مرنا في الفئران الدماغ استجابة لLPS الطرفية. المجلة الأمريكية لعلم وظائف الأعضاء، 268، R1327-R1331.
لوك، W.P، تشانغ، Y.، أبيض، T.D. وآخرون. (1999). الأدينوزين. وسيط انترلوكين 1β ؟؟ hippocampol الناجم عن تثبيط متشابك. مجلة علم الأعصاب، 19، 4238-4244.
مانتو، MU، Laute، MA، Aguera، M.، Rogemond، V.، باندولفو، M.، وHONNORAT، J. (2007). الآثار المضادة للالجلوتاميك الأجسام المضادة كربوكسيل حمض المرتبطة بالأمراض العصبية. دورية حوليات طب الاعصاب، 61 (6)، 544-551.
ماير، وس. ف.، Goehler، L.E.، Fleshner، M. وآخرون. (1998). دور العصب المبهم في الاتصالات خلوى إلى الدماغ. حوليات أكاديمية نيويورك للعلوم، 840، 289-300.
مورينو فوينمايور، H.، بورجاس، L.، اريتا، A.، فاليرا، V.، وسوكورو-Candanoza، L. (1996). البلازما الأحماض الأمينية مثير في التوحد. مجلة التحقيقات السريرية، 37 (2)، 113-128.
أوتي، C.، Neylan، TC، موقد فخار، SS، سمراء، WS، وWhooley، MA (2005) الأعراض الاكتئابية وعلى مدار 24 ساعة البولية مستويات إفراز النورادرينالين في المرضى الذين يعانون من مرض الشريان التاجي: النتائج من القلب والروح الدراسة. المجلة الأمريكية للطب النفسي، 162 (11)، 2139-2145.
Palmen، S.، Engelan، H.، هوف، PR، وشميتز، C. (2004). النتائج عصبية مرضية في التوحد. الدماغ، 127، 2572-2583.
بافلوف، VA، وانغ، H.، Czura، CJ، فريدمان، SG، وتريسي، KJ (2003). والكوليني مسار المضادة للالتهابات: الحلقة المفقودة في neuroimmunomodulation. الطب الجزيئي، 9 (5-8)، 125-134.
Polleux، F.، ولودر ج.م. (2004). نحو علم الأعصاب التنموي من مرض التوحد. التخلف العقلي والإعاقات التنموية البحوث تعليقات، 10، 303-317.
شي، L.، فاطمي، SH، سيدويل، RW & باترسون، PH (2003). أسباب الإصابة بالأنفلونزا الأمهات تميزت التغيرات السلوكية والدوائية في النسل. مجلة علم الأعصاب، 23، 297-302.
Shinohe، وآخرون. (2006). زيادة مستويات المصل من الغلوتامات في المرضى البالغين المصابين بالتوحد. التقدم في علم الادوية النفسية والعصبية البيولوجية Psychiastry، 30، 1472-1477.
ييب، J.، Soghomonia، J.J.، وبلات، G.J. (2007). انخفاض مستويات GAD67 مرنا في الخلايا العصبية للدماغ في التوحد: الآثار المرضية في جسم المريض. اكتا أمراض الأعصاب، 113، 559-568.
Vojdani، A.، كامبل، AW، أنيانوو، E.، Kashanian، A.، بوك، K. & Vojdani، E. (2002). الأجسام المضادة لمستضدات الخلايا العصبية الخاصة في الأطفال الذين يعانون من التوحد: ممكن عبر رد فعل مع البروتينات دماغي المنشأ من الحليب، الكلاميديا ​​الرئوية ومجموعة Stretoccoccus A. مجلة علم المناعة العصبية، 129، 168-177.
Vojdani، A.، Mumper، E.، Granpeesheh، D.، Mielke، L.، ترافر، D.، بوك، K.، وآخرون. (2008). انخفاض الخلايا الطبيعية القاتلة النشاط السامة للخلايا في التوحد: دور الجلوتاثيون، IL-2 و IL-15. مجلة علم المناعة العصبية، 205 (1-2)، 148-154.
ويكفيلد، AJ، Murch، SH، أنتوني، A.، لينيل، J.، كاسون، DM، مالك، M.، Berelowitz، M.، ديلون، AP، طومسون، MA، عيد الحب، A.، ديفيس، SE، و ووكر سميث، JA (1998). فائفي-اللمفاوية عقيدية تضخم والتهاب القولون غير محددة، واضطراب النمو المتفشي في الأطفال. انسيت، 351، 637-641.
وانغ، K.، تشانغ، H.، ما، D.، Bucan، M.، Glessner، JT، آبراهامز، BS، وآخرون. (2009). المتغيرات الجينية المشتركة على 5p14.1 المنتسبين الذين يعانون من اضطراب طيف التوحد. الطبيعة، [قبل الإليكتروني (Epub) من طباعة]
Zalcman، S.، GREE جونسون، JM، موراي، L. وآخرون. (1994). التعديلات مونوامين المركزي خلوى محددة الناجم عن انترلوكين 1-2، و-6. أبحاث الدماغ، 15، 287-290.

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس